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AbsIraeL Ihe leading nonstatic mnlribution to the effective potential in a RVB 
(resonating valence bond) phase for the 1-J model is characterized in terms of a 
canonical integral. It is shown that a Chem-Simons term does not arise from such an 
integral a1 low doping; however. at higher doping this integral suggsls that such a term 
could appear. 

1. Introduction 

In theoretical modelling of high-temperature superconductivity it is widely recognised 
that the coupling of charge and spin degrees of freedom in CuO, planes of the 
perovskite superconductors is an essential ingredient. Anderson 111 was the first 
to suggest that strongly correlated Hubbard [Z] models with spin would be an 
appropriate starting point for investigations. Later, Zhang and Rice [3] and Jefferson 
el a1 [4] gave arguments for the validity of such one-band models starting from a 
more general model involving relevant d orbitals for the Cu and p orbitals for the 0. 
In the strong correlation limit, the appropriate form of the Hubbard model becomes 
the 1-J model, for which the Hamiltonian a n  be written as 

The operator PI projects onto States with single occupancy at each site and 
projects out double occupancy. CL ( C j u )  represents a creation (annihilation) 
operator at site i for a carrier with spin U. usual (ij) denotes that i and j 
are nearest neighbour sites. In the limit of single carrier occupation per site the 
Hamiltonian reduces to the Heisenberg model. 

In two-dimensional space the statistics of quantum mechanical particles may be 
anomalous i.e. neither fermionic nor bosonic. This implies parity and time reversal 
violating states. There have recently been investigations of the consequences of 
continuous field theories with so called Chern-Simons terms which can give rise to 
such states [SI. Generally, given a system with a symmetry described by a current 
J,, the ChernSimons term 1.51 in a Lagrangian formulation is given by the following 
contribution to the Lagrangian density: 

&hern-Simona = -(1/8a)cu,AA'FUA (2) 
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where 

J ,  = (1 /4a )e , , ,FYA (3) 

F,, = @ " A ,  - aAA,. (4) 

Here the three co-ordinates are the two spatial dimensions and the temperature 
(which is an imaginary time variable); exp(ia) is the phase change of a wavefunction 
when two quasi-particles are exchanged. Whereas the consequences of such a term 
in continuum theory have been to a certain extent examined, the question of its 
existence, starting from a microscopic lattice Hamiltonian such as the 1-J model, 
has received little attention One of the few discussions has been due to Aitchison 
and Mavromatos (61 who have argued on symmetry grounds that such a term could 
arise in a mean field version of the t-J model. However the question cannot be 
settled on purely symmetry grounds and has to be a consequence of many-body 
effects. Moreover the mean field version of the 1-J model misses out the important 
strong correlation effects which should be the key to the existence of anomalous 
statistics. The experimental situation has not led to a clear cut resolution since there 
is disagreement on the interpretation of experiments [7] (such as those involving light 
scattering). Since we do  not yet have a rigorous theory for such effects it is essential 
to apply as many different approaches as possible and come to a consellsus. We 
will calculate the partition function for the 1-J model using a functional integral 
representation, Hubbard-Stratonovich transformation in the order parameter and 
a form of high-temperature expansion. The effect of the projection operators is 
directly taken into account by restriction of states in performing the trace. in the 
partition function This formulation [SI has already been used to calculate the 
Landau-Ginzburg functional in the leading order (or static approximation) of the 
high-temperature expansion. However, as should be clear from (2), the topological 
term involves derivatives and so changes with respect to the temperature variable. 
Consequently a static approximation in the high-temperature formulation will be 
inadequate. 

2. The partition function 

A sum over any complete set of states is sufficient to calculate the partition function 
Z where 

Owing to the projection operators in f f - ,  the sum can be restricted to the subspace 
of no double occupancy. In order to have a hope of finding a ChernSimons term we 
need to be in a T and P violating phase. Anderson [l] has suggested that an order 
parameter associated with such phases is given by the expectation value A,, of 

bij = (l/fi)(Ci,Cj, - Ci,Cjr). 

One such phase is given by a A,, which is translationally invariant and has values 
A, and A, along the links in the I and y directions respectively. It has been 
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shown [SI that there is a static saddle point solution of the functional integral with 
A, = A,exp(i+) (where 4 E [n/2, XI) for sufficiently low doping and temperature. 
Now it has been shown [7] that there is a static saddle point solution of the functional 
integral favouring such a phase for sufficiently low doping and temperature. We will 
calculate the leading order ‘time’ dependent contribution to the functional integral 
for the partition function in this phase. As will be clear presently, we can write 

We have continuous ‘time’ but a discrete spatial lattice. The Lagrangian like object 
C is, in this context, known as a Landau-Ginzburg functional or effective potential. 
In order to set up the functional integral formulation of the partition function it is 
possible to follow the methods [9] applied to the Anderson impurity problem even 
though in that case there is no projection operator controlling the occupation of sites. 
Now the Heisenberg terms can be written as 

s..s.=1-1c+c. I I 4 2 io  j n  c+,ci,,. I C  (8) 

This c a n  be further simplified by noting that 

It is standard at this juncture [5,S] to use the Hubbard-Stratonovich identity 
m 

d A  exp[-(A - U)’ + U’] = J;;exp(v’) (10) 1- 
where U and U can be operators provided that they commute with each other. This 
leads to [SI 

+ Aij(T)bG(r) + A ; j ( 7 ) b i j (  (11) 

where we have used the standard representation of the time evolution operator in 
the interaction representation, and 

bij(7) = exP[r(Hu + HI)lbij(O)exP[-r(Hu+ HI)] 

b G ( 7 )  = exp[r (Hu+ H,)]b;(O)exp[-r(H,+ H!)]. 

(1b) 

(126) 

Hu is defined by [SI 
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p,, being the hole chemical potential. H ,  is the hopping term (proportional to t )  in 
H,.J.  A , , ( T )  is a complex function and 

@ A . .  '1 = dA!r) 11 dA(iy) (14) 

with A . .  = A(?) + iA(y). For each link there corresponds only one A,,. In order to 
introduce a gauge field representation for A,, it will be useful to choose a direction 
convention for links. For our two-dimensional lattice with lattice points labelled by 
(n, m) we can, for example, adopt the following convention for directions: 

11 V 11 

( Z n i l . 2 m t l )  ( 2 n + 2 , 2 m + l )  ( 2 n + 3 , 2 m + l )  

Figure 1. Convention for directional links. 

If we follow the standard unsafz [lo] that 

= Ao(P)exp(i@ij(~))  (15) 

where the magnitude A&?) is independent of T ,  then the gauge field [9] appears on 
writing 

Here T is a lattice site, i and 6 are unit vectors in the I and y directions and 
a is a lattice spacing. The direction of the link in Oij will go from i to j. The 
functions A=(T) and A,,(r) are gauge fields. An important aspect of the functional 
representation is the periodicity 191 of A,,, 

Ai,(. t P )  = A;j(.) (17) 

and so it can be expanded as a Fourier series, 

m .. 

aij(7) = Aij, ,exp(-i~.r)  
"=-CO 

where 
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It should now be clear as to the meaning of static and non-static contributions. In 
the static approximation, 

Aij(7) = Aij,, (19) 

~ $ ) ( r )  = Aij,,exp(-inlr) + Aij,-l exp(inlr) .  

and so the leading (mildest) form of non-static contribution Ajj'(7) is given by 

(20) 

(This form of non-static contribution is more appropriate than a 'Ibylor expansion 
which does not respect periodicity in time.) In (16) only A,(= A,) and A,(= AY) 
components have been introduced. Consequently the time component of A does not 
occur and we can regard this as the manifestation of choosing the gauge A, = 0. In 
this gauge the ChernSimons term reduces to 

L e r n - S i m o n s  = - ( 1 / 4 0 ) [ A 2 ( ~ ) 9 ~ 1 ( 2 )  - A1(z)aUA2(*)I. (21) 

This can emerge from a term 

A ~ ~ ( T ) ~ " A ; ~ ( T )  

when 

' j k  = @ i , r + a i  ( 2 b )  

e..  ' I  = e,+a9v.. (2%) 

(23) 

(24) 

Using (15) we can deduce that 

A i j ( ~ ) a u A ; h ( ~ )  Y lA,(fl)lz[l t i(Bij(T) - ' j k ( ~ ) ) l [ - i ~ , ~ ( r ) ] .  

g2aZ(AY(r) - A = ( r ) ) A z ( ~ )  = sZa'IAy(r)A,(r) - f (a /a~)lA,(r) l~) .  
We consider the piece of this expression 

Since in the expression for the  partition function we are actually interested in 

the total derivative in (24) does not contribute owing to the periodicity of A Z ( r )  as 
a function of 7.  Similarly the term A i j ( ~ ) A ; k ( r )  gives rise to -gZa2A,(r )A, (r )  
and so the term AL 

P 
A L  = 1 d r ( A i j ( r ) & i k ( T )  - A i j ( r ) A i k ( r ) )  t CC (25) 

contains the Chern-Simons contribution. The hope that a Chern-Simons term may 
be generated from fluctuations in ' the theory in the presence of holes has some 
indirect support from a calculation in field theory. A fermionic isospin doublet G', 
when coupled by a Yukawa term to a c-number isospin vector field, generates an 
expectation value of the fermionic current. This expectation value is proportional to 
the topological current [ll] when the c-number isospin vector field is a soliton solution 
of the non-linear o-model. The non-linear o-model is the continuum version of the 
Heisenberg model. By a series of arguments [I21 the ChernSimons term can be 
related to a non-local bilinear interaction of the topological current. 
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3. The non-static approximation 

It is possible to adopt the method for obtaining the non-static approximation in the 
Anderson model used by Morandi el al [9] for the case that the Hilbert space is not 
constrained by projection operators. In (11) we write 

We can now change the interaction to one with respect to the Hamiltonian H’ 

H‘ = Hu + H ,  + x[A;j,ub:(O) + A:j,ubi;(O)l 

and then 
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for the interaction representation with respect to ‘Hw This reformulation extracts 
rather clearly the non-static contribution. We can perform the trace in (28) up to 
second order dij and this will suffice to calculate the non-static corrections to L in 
lowest order. If our method of calculation is valid to sufficiently low temperature 
(i.e. there is no phase transition as we lower T), then we will be able to provide 
evidence for or against the existence of a ChernSimons term. The value of Ai;,u 
will determine the nature of the phase about which we are finding excitations, and 
has already been calculated [SI. Tb second order in A, 

The evaluation of this trace. is the major task facing us. It will be convenient to 
replace the term providing time ordering in (33) by the equivalent expression 

+ AFJ,l ( r ) A , , j ! , ~ (  7’ )  6; j  ( T ) 6 : j ,  ( T ‘ ) ]  . 
We can visualize through diagrams the contributions to R, where 

P 
Pu,l exp(-pX‘) / d r  / r  d r ‘  [ A i j , l ( ~ ) ~ ~ , j , , l ( r ‘ ) ~ ~ ( ~ ) ~ i , j , ( ~ ’ )  

U U 

+ A;j,i ( T ) i \ i ,  j , . l (  7 ‘ )  6,; ( 7 ) L ; ; j  (TI)]) . (35) 
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The individual terms for which we need to calculate the trace can be expressed in 
terms of the following operator elements: 

............. ................... .................... ..... ...... ..... ..... .... .... 
...... ....... 

.... ... .... .... ... .... ... ... ... ... ... ... 
j t 

...................... ..................... ................ ...... ..... ..... ..... .... .... ... .... .... ... ... ... ... ... ... ... ... ... ‘1 1 

i j 

Plgure 2. Basic diagrams 

Let us examine how diagrams arise. On using (30), 

R = f d , d r d r ‘  [Tr{exp[-(p - r)H’]&ij,,(r)A:,j,,l(r‘)b$(0) 

x exp[-(r-~’)H’]bi,j.(0)exp(-r’H’)}+(ccwith ( i , j )  ++ (i’j’))]. 

(36) 

The terms that contribute to R are proportional to 

(i) Aij , , (~ )A; , j , , l (~ ’ )  

(U) A,m,uAi,m,,uAij,l(,)Ai,j,,l(T’) 

(since we are calculating a trace, an equal number of creation and annihilation 
operators must act on each state at any site). For local contributions the lattice sites 
involved need to be continuous The terms giving (i) can be summarized by 
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Figure 3. 

Similarly (ii) is derived from 

Figure 4. 

The expression corresponding to figure 3 ( a )  (I,, say) is 

X ex€'[-(@ - ~ ) ~ * ] ~ , j , , ( T ) A ~ ~ , ~ ( r ' ) b ~ ( o )  

x expi-(.- r')(Hu+ H,) lb jdO)ex~[- r ' (Hu + ~ t ) l l ~ ) i l ~ ) j l w ) k  
(37) 

where the  summation variables can take the values of 0 (empty site), 1 (single 
up spin occupation) and 1 (single down spin occupation). Similar expressions can 
be associated with figures 3(b) ,  4(a) and 4(b) .  Although the computations are, in 
principle, straightfonuard, there are intermediate steps of some algebraic complexity. 
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Consequently, as a check, we have found it advantageous to use REDUCE, a computer 
program designed for symbolic manipulation. A product of a string of creation 
and annihilation operators can thus readily be made to normal order which is a 
manipulation at the heart of evaluating matrix elements such as those in (37). The 
expression for the partition function is expanded in p, the magnitude of the order 
parameter (assumed small), 1 and the hole fugacity [7] which vanishes at half-filling. 

4. The non-static eRective potential 

We will simplify AL: prior to checking whether such a form appears in our calculation 
of the nonstatic effective potential. Owing to periodicity, only the constant part of 
the integral in (25) contributes, and gives 

(38) 
27ri AL:= -(-A.. p , , , -I  A! - , k , - l  + A i j , l q k , l )  + cc. 

In the calculations of the contributions of figures 3(a), 3(b) ,  4(a) and 4(b) we find 
that the results can be written in terms of the canonical integral 

I j j k ( a , c )  = lo d r  lr  dr ' fJ , , , l ( r ) fJ~k, l ( r ' )  exp(aT)exp(cr') (39) 

where 

si;,l(~) = Ai;,l exp[-(2*i /~)r]  + Ai,,-l exp[(27ri/p)r]. 

a:j,uAjk,u[lijb (2 U) (2@It3-23h) + f,j; (0 2) (2@h,-2@h) - - 24(:;)(2bh3-2fil,)] 

(40) 

A typical contribution to Cl has the form 

and so we will consider the canonical integral I/!';'")(-c, c). (pjLh is log z and z is 
the hole fugacity.) We consider the limits 

(i) 

or 

(ii) 

Since c = -pbh v 

(0' 
or 

(U)' 

tegra :se nits are equivz :nt to 
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For case (i) we find 

(0 0) -1 

1) I. 27r (410) 

(41b) 

(414 

(414  

IL' (-c,c) Y -L33(Aij,1A;k,1 -Aij,-lA;h,-l) 

I . .  (02) (-c,c) 2 ip4(1/47r3 - 1 / 6 ~ ) ( A ~ ~ , ~ & ; ~ , ,  - &j,-l&;h,-l) + '. . 
I . . '  (2 0 )  (-c,c) ip4(1/47r3 - 1/67r)(&j,1A;k,1 - &j,-lA;h,-l) + .. . 
ri,i (1 1) (-C, C) 2 -ip4(1/87r3 + 1 / 6 n ) ( ~ i ~ ~ , ~ A ; ~ , ~  - &j,-lA;k,-l) + . . . 

%J I: 

11 k 

and there are similar expressions for I;;im)(-c,c) with other n and m. The 
important point to note is the appearance of the combination (Aij,lA;k,l - 
Aij,-lA;h,-l) which is precisely that which occurs in AL, the ChernSimons term. 
For case (i) this combination does not appear in $;"')(-C,C), e.g. 

I , . '  (0  2) (-C, C) 2 (Aij,lA;k,i + Aij,-lA;k,-i)(@/3Pc) 
11 k 

+ (&j ,~Ajk , l  + A;j,-16;,,1)(P4/87r2Pc) 

+ (A,j,IA;k,-l - dij,-]A;k,l)(i84/4npc). (42) 

Consequently for very low doping (which is case (ii)) this is an indication that the 
Chern-Simons term does not occur. Case (i) indicates that at higher doping such 
a term can exist. However our  calculation is not refined enough to determine the 
transition between the two behaviours. The purpose of this calculation has been to 
show how qualitatively such a term can arise in a straightfonvard way in the t-J 
model. It will be important now to pursue this approach but to  include other possible 
order parameters in the effective potential. It will then be possible to examine the 
detailed behaviour of the ChernSimons term as a function of doping. In order to 
proceed with such calculations efficiently, we need to develop a systematic scheme. 
This is provided by the finite cluster method, details of which will be published 
elsewhere [13]. 
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